det(A·B) = det(A) · det(B), where A and B are square matrices of
the same size.
lemma:經過基本矩陣操作的矩陣行列式為原矩陣行列式與基本矩陣行列式的乘積
If B is a square matrix and E is an elementary matrix of the same
size, then det(EB) = det(E) · det(B)
推廣之有:
If B = Ek ·Ek-1 ... E2 · E1 · A ,then
det(B) = det (Ek Ek-1 ... E2 E1 A)
= det(Ek) det (Ek-1) ... det(E2) det(E1) det(A)
注意之前提到過det(E)有三種可能:k、1、-1,分別對應三種ERO對行列式的影響。
(重要)Theorem:
當且僅當行列式不為0時,方陣可逆。
A square matrix A is invertible if and only if det(A) ≠ 0
proof:
正向證明(矩陣可逆則其行列式不為0) >let R be the RREF of A,
then by throrem, there exist elementary matrices E1,E2,...,Ek such that
> >R = Ek Ek-1 ... E2 E1 A > >∵A is invertible >
>R = I = Ek Ek-1 ... E2 E1 A >
>det(I) = det(Ek Ek-1 ... E2 E1 A ) > >1 = det(Ek) det(Ek-1)
... det(E2) det(E1) det(A) > >∴ det(A) ≠ 0
If A is an n-by-n matrix and cij is the cofactor of aij, then the
matrix [c11 c12 ... c1n, c21 c22 ... c2n, ... , cn1 cn2... cnn] is
called the matrix of cofactor from A. The transpose of this matrix is
called the adjoint of A, is denoted by adj(A).
If AX = b is a system of n linear equations in n knowns such that
det(A) ≠ 0, then the system has a unique solution.
The solution is x1 = det(A1) / det(A), x2 = det(A2) / det(A), ..., xn
= det(An) / det(A), where Aj is the matrix obtained by replacing the
entries in the jth column of A by the entries in the matrix(column
vector) b = [b1 , b2,..., bn].
該求解方法在實際運算上不能帶來便利,但其形式卻比較漂亮。
Proof:
∵ det(A) ≠ 0 => A is invertible
∴ AX = b => A^-1· A · X = A^-1 · b => I · X = A^-1 · b => X
= A^-1 · b => x = (adj(A) / det(A)) ·b =